Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression.
نویسندگان
چکیده
Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.
منابع مشابه
Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans.
Transgenic bacteria producing pyrroloquinoline quinone, a known cofactor for dehydrogenases and an inducer of a periplasmic protein kinase activity, show resistance to both oxidative stress and protection from nonoxidative effects of radiation and DNA-damaging agents. Deinococcus radiodurans R1 encodes an active pyrroloquinoline quinone synthase, and constitutive synthesis of pyrroloquinoline q...
متن کاملCharacterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repairmmi_7301 1470..1482
Deinococcus radiodurans mutant lacking pyrroloquinoline–quinone (PQQ) synthesis shows sensitivity to g-rays and impairment of DNA double strand break repair. The genome of this bacterium encodes five putative proteins having multiple PQQ binding motifs. The deletion mutants of corresponding genes were generated, and their response to DNA damage was monitored. Only the Ddr2518 mutant exhibited h...
متن کاملAn Antioxidant from a Radioresistant Bacterium: its role in Radiation Resistance beyond Oxidative Stress Tolerance
In living cells, reactive oxygen/nitrogen species (ROS/RNS) are produced as the byproducts of metabolic processes during aerobic respiration or during growth under unfavorable conditions. Organisms have evolved different strategies, involving both antioxidant enzymes and non-enzymatic antioxidant molecules to detoxify these species. These reactive molecules, if not detoxified, can cause oxidati...
متن کاملCharacterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans.
Deinococcus radiodurans shows extraordinary tolerance to DNA damage, and exhibits differential gene expression and protein recycling. A putative response regulator, the DRB0091 (RadR) ORF, was identified from a pool of DNA-binding proteins induced in response to gamma radiation in this bacterium. radR is located upstream of drB0090, which encodes a putative sensor histidine kinase (RadS) on the...
متن کاملStructure-function study of deinococcal serine/threonine protein kinase implicates its kinase activity and DNA repair protein phosphorylation roles in radioresistance of Deinococcus radiodurans.
The DR2518 (RqkA) a eukaryotic type serine/threonine protein kinase in Deinococcus radiodurans was characterized for its role in bacterial response to oxidative stress and DNA damage. The K42A, S162A, T169A and S171A mutation in RqkA differentially affected its kinase activity and functional complementation for γ radiation resistance in Δdr2518 mutant. For example, K42A mutant was completely in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of basic microbiology
دوره 53 6 شماره
صفحات -
تاریخ انتشار 2013